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Abstract

The complex relationship between fluidmotion and curved surfaces significantly affects flowdy-
namics, yielding intricate patterns and phenomena. Fluid flow over curved geometries, specif-
ically on parabolic geometries, is a crucial phenomenon in multiple engineering disciplines.
Parabolic surfaces, characterized by their continuous curvature, are ubiquitous in nature and
industrial applications, ranging from aerodynamic wing designs to hydroelectric power plants
and biomedical devices. This study delineates the complex interactions among several criti-
cal factors like activation energy and melting heat accounting for supplementary factors such
as mixed convection, heat source and Cattaneo-Christov formulation. The primary goal of this
research paper is to investigate the combined effects of melting heat, activation energy, andmag-
netic fields (MHD) on the flow, heat transfer, and mass transfer characteristics of a Williamson
non-Newtonian fluid over parabolic and plane surfaces. Solutions are derived numerically by
employing Matlab’s built-in bvp4c function and illustrated graphically for parabolic and plane
geometries. Validation exercises reveal a high degree of consistency between numerical results
and published data. Parabolic flow exhibits a rapid temperature escalation compared to plane
flow. Parabolic flow demonstrates a pronounced concentration drop than in plane flow. A novel
comparative scrutiny is carried out on parabolic and plane surfaces in the context of Williamson
fluid. This study delineates the complex interactions among several critical factors like acti-
vation energy and melting heat, This research seeks to advance understanding in applications
such as materials processing, polymer manufacturing, and energy systems. It is evinced that
the parabolic surface demonstrates superior skin friction and heat transmission accompanied
by reduced mass transport compared to plane surfaces.
Keywords: magnetohydrodynamic; heat source; Cattaneo-Christov formulation; bvp4c.
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1 Introduction

Non-Newtonian fluids have an important significance in modern engineering. Examples are
environmental engineering [47], biological gels [25], polymer processing [36], and energy gen-
eration [57]. Non-Newtonian fluids are important in engineering and industrial processes, hence
researchers are investigating mass and heat transfer phenomena. Shampoos, jelly, sugar, honey,
human blood, pulps, and other products are examples of non-Newtonian fluids. Non-Newtonian
fluids’ viscosity is typically influenced by shear rate. Non-Newtonian fluids can exhibit stress
changes and other non-Newtonian phenomena despite having independent viscosity and shear.
The Williamson liquid is a Non-Newtonian and time-invariant liquid with pseudo-plastic traits.
Williamson liquid model imparts mathematical framework for the comprehension of pseudoplas-
tic rheology of diverse materials. Pseudoplastic fluids are widely encountered in the manufac-
ture of emulsion-based imaging films, polymeric sheets, transmission of plasma and etc. The
Williamson fluid is a model of pseudoplastic fluid. Pseudo-plastic fluids are used in engineering
and industry for food processing, blood cells, photographic films, and inkjet printing.

Nadeem et al. [41] performed a comprehensive research on the flow dynamics of Williamson
fluid driven by an extending surface. They spotted a parabolic deceleration in skin friction for
an escalation in the Williamson term and manifested that Williamson model effectively charac-
terizes the flow features of pseudoplastic liquids. Shafiq and Sindhu [50], employed the effect
of hydromagnetics in the Williamson fluid boundary layer flow towards a stretched permeable
surface. Human blood flow is an important topic in biomedical research because it can help treat
blood diseases. However, experimental research is expensive and time-consuming was studied
by Azmi et al. [13]. Shah et al. [51] studied the flow of a Williamson liquid film fluid across a
time-dependent stretching surface, including heat transfer and thermal radiation embedded in a
porous media.

The combined effects of viscosity, temperature, and slanted Lorentz force onWilliamson nano-
fluid flow across a variable stretching sheet are discussed by Khan et al. [29]. Shawky et al. [53]
explored the two-dimensional hydromagnetic flow of an incompressible Williamson nanofluid
across a stretched sheet in a porous environment. Kho et al. [33] examined the heat transfer anal-
ysis and slip circumstances on a Williamson nanofluid over a stretching sheet. Dada et al. [16]
examined the effects of radiation and chemical reactions on heat and mass transport in magne-
tohydrodynamics (MHD) Williamson fluid flow over a narrowing stretched sheet with varying
thickness. The effect of an inclined magnetic field onWilliamson fluid on a stretching sheet when
convective boundary conditions are present in the nanoparticles was investigated by Srinivasulu
and Goud [56]. The research by Reddy et al. [46] approximated a resolution and analyzed the
flow attributes of MHDWilliamson liquid near a extending cylinder.

Hussain et al. [26] examined the temperature-dependent viscosity and mixed convection af-
fect the flow of SWCNTs and MWCNTs. A comparative analysis of SWCNTs and MWCNTs sus-
pended in base liquid is given. Ali et al. [5] explored the mathematical model to analyse blood
flow through a stenosed blood artery. Stenosis illness is characterised by an abnormal constriction
of blood flow in the body. A non-Newtonian fluidwith yield stress to analyse the complex dynam-
ics of heat transfer in a stagnation-point MHD (Magnetohydrodynamic) convection system was
investigated by Anwar et al. [11]. Khan et al. [31] the bioconvective flow of Ree-Eyring across
an expanding sheet with a porous media, taking into account the inclined magnetic field and
gyrotactic microorganisms. Irfan et al. [28] findings show that the performance of the thermo-
relaxation factor in the temperature field and the sloutal-relaxation factor in the concentration
field is declining. The increasing performance of the mass diffusivity factor has been discovered
in the concentration field. Sobhana Babu et al. [55] focusses on how a boundary layer regulates
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the movement of a non-Newtonian fluid during a chemical reaction on a radiative paraboloid sur-
face. This involves investigating the fluid’s velocity, temperature, and mass transfer. This study
focusses on the Williamson fluid model, which is an extended Newtonian fluid.

The automotive industry endeavors to engineer vehicles with reduced frictional or resistive
forces. The intricate arrangements found in torpedoes, race cars, aircraft, and spacecraft are of
utmost importance in the production of submarines. Likewise, the configuration of munitions,
supersonic aircraft, and guided weaponry plays a important role in their manufacture. Because
of the hydrodynamics of the system, the streamlines encounter almost no resistance, and the bulk
of the contours are excellent approximations to a small set of paraboloid surfaces. The theoretical
framework presented by Davis and Werle [17] elucidates the dynamics governing the movement
of a Non-compressible, viscous Newtonian fluid across a surface that conforms to the geometric
profile of a paraboloid of revolution. Khan et al. [32] explored the dynamic processes of quartic
autocatalysis chemical reactions in Williamson nanofluid flow on a parabolic surface to optimise
and increase the efficiency of industrial and technical systems with intricate fluid dynamics and
chemical reactions.

Analysed are the movements of gyrotactic microorganisms past a paraboloid of revolution
(uhspr), a quartic autocatalysis chemical process, and the flow of a Williamson nanofluid with
Cattaneo-christov (C–C) heat flux. Animasaun and Sandeep [9] conducted a study to analyse
the phenomeNon of buoyancy-induced flow in a nano fluid. The nano fluid was composed of
36nm alumina particles that were dispersed in water. The researchers specifically focused on the
behaviour of the nano fluid as it moved over a paraboloid of revolution. In their study, Makinde
andAnimasaun [37] conducted an investigation on the flow characteristics of a 36nm alumina and
water-based nanofluid over a paraboloid of revolution, while taking into account the phenomenon
of bioconvection. Koriko et al. [34] introduced a new version of buoyancy-induced flow of 29nm
CuO and water-based nano fluid powered of a paraboloid of revolution by an upper surface.

Abegunrin et al. [3] as well as Animasaun et al. [8] conducted a theoretical investigation on
the behaviour of fluid over a Non-horizontal, Non-vertical, Non-inclined, Non-wedge, and Non-
cone surface. Their study incorporated catalytic surface reactions. Khan et al. [32] summarized
the flow features of MHD bio convective Newtonian fluid caused by a parabolic revolution with
chemical reaction. Santoshi et al. [49] provided a succinct overview of the flow characteristics
exhibited by magnetic Carreau/Casson fluids when traversing a porous paraboloid of revolution
while being subjected to convective limitations. By taking a variety of factors into consideration,
Zeeshan et al. [58] and Gangadhar et al. [23] explored the various physical properties of a pair
stress fluid that was created by a parabolic surface in the presence of catalytic surface reactions.
Naik et al. [42] investigated various fluid flows through an expanded plate. The effects of viscous
dissipation, activation energy, and chemical reaction are considered while modelling the investi-
gated physical events.

Magnetohydrodynamic boundary layers for heat and mass transmission over surfaces are em-
ployed in a variety of technical and geophysical applications, including nuclear reactor cooling,
packed-bed catalytic reactors, geothermal reservoirs, thermal insulation, and enhanced oil recov-
ery. Recently, elucidating andmodeling the intricate behavior of complex fluid flows has emerged
as a pivotal research domain. Researchers have shown keen attention in studying the role of ex-
trinsic factors, specifically magnetic fields. Magnetohydrodynamics (MHD) is a scientific field
which concerned with the comprehension of features of electrically conductive liquids in the en-
vironment of magnetic force. This factor has extensive practical utilizations encompassing liq-
uid transportation, electrical energy production, metal shaping and nuclear fusion technology.
MHD is extensively employed because it enables the regulation on fluid motion via electromag-
netic forces. Investigating theMHDflow of aWilliamson fluidwith Dufour and Soret effects is the
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aim of the current investigation. The primary focuswas examined byHayat et al. [24], who used a
more comprehensive application ofmodifiedDarcy’s rule to discuss these effects in the presence of
permeable medium. The novel part of the current work was examined by Shashikumar et al. [52],
who built aWilliamson fluidmodel for thermal analysis ofMHDflow along amicrochannel in the
presence of convective heating and viscous dissipation. The nature of MHD heat and mass trans-
mission was investigated by Kumaran and Sandeep [35]. Theoretical discussion of Williamson
and Casson fluids is presented using thermophoresis and the Brownian moment in relation to an
upper paraboloid of revolution. Both diffusion-thermo and thermo-diffusion effects are taken into
account in the model.

Khan et al. [30] investigated how a magnetic field, thermal resistance, and chemical processes
affect the heat and mass transfer parameters of an MHD WNF flowing across a stretched sheet
immersed in porous media. Rasheed and Anwar [45] explored the magneto-hydrodynamic flow
of viscoelastic liquid using a revised thermal flux model. Ganesh Kumar et al. [22] investigate the
flow and thermal properties of a sheet that is continually stretched. Variable thermal conductivity
must also be considered while calculating temperature. Furthermore, the flow problem takes into
account the convective circumstances of heat and mass transport. Padma Devi et al. [44] studied
the computational methods to investigate the unsteady two immiscible MHD free convective flow
of Casson liquid along a vertical channelwith a porousmedia. Devi and Srinivas [18] explored the
MHD oscillatory flow of two immiscible, viscous liquids in a porous channel with heat transfer.

The pivotal role of activation energy in mass transmission across crucial disciplines like food
production, chemical processing, oil emulsions and geothermal energy has garnered substantial
attention from the scientists. Arrhenius pioneered the idea of activation energy in 1889. It is the
smallest quantity of energy which is essential for particles to engage in a chemical reaction. Re-
actants must possess activation energy to facilitate their conversion into products. Bestman [14]
initially investigated the boundarywall moves in its own planewith suction. This article discusses
free convective boundary layer flow in a porous material with simultaneous mass and heat trans-
mission. The paper also covers chemical processes for the simplest model of a binary reaction
with Arrhenius activation energy. Makinde et al. [38] studied how energy of activation interacts
with chemical reactions (nth-order) in unsteady flow across a flat radiated permeable surface.
Alsaadi et al. [6] addressed the entropy generation on the MHD motion of a 2nd grade liquid by
incorporating the activation energy across an extending sheet. Their examination divulged that
enhancing the activation energy factor yields higher concentrations. Khan et al. [29] explored the
thermophysical characteristics of Williamson nanofluid flow across a rotating stretchable surface
in magnetohydrodynamics (MHD) while taking activation energy, nonlinear thermal radiation,
Joule heating, and changing thermal coefficient into account. Irfan et al. [27] formulated an un-
steady model for the flow of Carreau fluid to assess the consequences of activation energy. Their
work highlighted that the introduction of the reaction rate term causes alterations in the rheolog-
ical attributes of Non-Newtonian fluids which yielded lower concentrations.

Nihaal et al. [43] analyzed the Darcy-Fochheimer assisted flow of a ternary fluid driven by
an extendable disk and influenced by activation energy. The findings suggest that harnessing
bioconvection phenomena can significantly enhance the heat transmission of the base fluid and
facilitating more efficient heat transmission. Azhar et al. [12] scrutinized the consequences of
activation energy on MHD flow of a ternary fluid around a expandable disk by incorporating
variable viscosity. The current communication aimed to investigate the flow properties of carbon
nanotubes (CNTs) across a stretching surface, which was accomplished. In addition, the impacts
of radiation, chemical processes, and activation energy are studied by Singnaik et.al [54].

Heat transmission is caused by the temperature differential between two dissimilar bodies. It is
essential for energy production, cooling nuclear reactors, and biological uses like medication tar-
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geting and tissue heat conduction. Transfer of heat was first described by Fourier [20], a parabolic
energy equation for temperature field. Its drawback is that the first disruption is detected rapidly
across every aspect of medium. Â The Williamson fluid model was used to numerically simulate
MHD flow on a variable thickness sheet by Salahuddin et al. [48]. A modified form of Fourier’s
law, the Cattaneo-Christov heat ux model, is used to study heat transmission phenomena. Catta-
neo [15] extended the Fourier law of heat conduction with the thermal relaxation factor. Sluggish
thermal waves transport heat when thermal relaxation time is introduced. Mustafa [40] studied
the Cattaneo-Christov heat flow model for Maxwell fluid on a stretchable sheet. He discovered
that thermal relaxation time and thermal boundary layer thickness are inversely proportional.
Current theoretical and computational research within the Darcy-Forchheimer medium using
electromagnetic fields has revealed the heat and mass transportation properties of Williamson-
Sutterby nanofluid flow under the effects of Cattaneo-Christov double diffusion, radiation heat
flux, magnetic dipole, and convective boundary over a stretchy surface.

Ganesh Kumar et al. [21] explored the flow of tangent hyperbolic fluid across a moving
stretched surface. The features of heat transmission are provided by using nonlinear radiation.
Activation energy characterises other characteristics of mass transfer. The variable thermal con-
ductivity theory also explains heat transport phenomenaMixed convection refers to the combined
effects of free and forced convection. It is widely employed in technical applications like as so-
lar collectors, electronics, and nuclear power plants. When buoyancy force dominates the forced
convective process, or forced flow dominates the free convective process, such a process occurs,
as studied by Dhruvathara et al. [19]. Anwar et al. [10] paper offers a thorough examination of
heat transfer and flow dynamics in magnetohydrodynamic (MHD) hybrid nanofluids. Alsa’di et
al. [7] investigated the theoretical, analytical, and approximate solutions to the Caputo fractional
Volterra-Fredholm integro-differential equations (FVFIDEs).

This study uniquely investigates the Magnetohydrodynamic (MHD) flow of a Williamson
fluid over parabolic and plane surfaces, comprehensively comparing these geometries under sim-
ilar physical conditions. The simultaneous consideration of melting heat and activation energy
effects in the flow dynamics introduces a new perspective on thermal and mass transfer phenom-
ena for non-Newtonian fluids. By employing an efficient numerical approach, by using bvp4c
solver inMATLAB the study enhances the accuracy of solutions for complex governing equations.
The analysis extends the understanding of MHD effects on non-Newtonian Williamson fluid be-
haviour, particularly in varying thermal and concentration boundary conditions. The findings
provide insights into real-world applications such as polymer extrusion, geothermal energy sys-
tems, and cooling technologies, where Williamson fluids and MHD effects play a critical role.
Existing research focuses on flat or cylindrical surfaces, with minimal attention to parabolic ge-
ometries and their unique flow characteristics. While these factors have been studied individually
in fluid dynamics, their combined impact on the behaviour of MHD Williamson fluids remains
underexplored.

The authors discerned a substantial knowledge scarcity on the collective impression of parabolic
surface, activation energy and Cattaneo-Christov on the flow dynamics of Williamson fluid ac-
counting for supplementary factors such as mixed convection, heat source. Despite of extensive
research on parabolic surfaces, specifically for Williamson fluids on a parabolic surface within
activation energy and melting heat, presents opportunities for future study. Thus, the primary
motive and originality of this research is to impart a comprehensive understanding of how activa-
tion energy and melting heat affect Williamson fluid flow on a parabolic surface, with particular
emphasis onmixed convection and heat source. This research endeavors to impart insight into the
multifaceted relationships between various factors affecting fluid flow and elucidate the underly-
ing mechanisms that influence the flow dynamics.
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2 Physical Questions

Upon concluding our in depth analysis, we have developed the essential insights to address
the following vital issues:

• What major repercussions do our findings highlight regarding the complex interconnection
between Williamson fluid and liquid velocity?

• In what manner does melting heat alter the liquid temperature?
• In what manner does activation energy alter the liquid concentration?

3 Basic Assumptions

The investigation tractable, we employ the following assumptions:

1. The fluid is an incompressibleWilliamson fluidwith non-Newtonian viscoelastic properties.
2. The flow is considered two-dimensional, steady, and laminar over parabolic and plane sur-

faces. The surfaces are impermeable, and the fluid flow adheres to the no-slip condition at
the surface.

3. A uniform magnetic field is applied perpendicular to the flow direction, with no induced
magnetic field or Hall effect considered. The magnetic Reynolds number is small, implying
that the magnetic field does not vary with the fluid flow.

4. Heat transfer is influenced by melting at the surface, which absorbs some thermal energy.
5. The Cattaneo-Christov heat flux model (if applied) accounts for finite heat propagation

speed (thermal relaxation time).
6. Concentration variations are governed by species diffusion and activation energy effects.
7. The reaction rate is temperature-dependent and follows an Arrhenius-type exponential re-

lation.

4 Model Description

The transport perusal of a steady, 2D and viscousWilliamson fluid towards an upper parabolic
surface is explored. It is assumed that natural convection is driven by buoyancy. The domain is
B1

√
(x+ c1)

1−m ≤ y <∞, as shown in Figure 1.
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Figure 1: Flow geometry.

Here, (m(< 1), c1) are power index of velocity and stretching constraint, respectively. The fluid
layers on the surface are stretched parallel with velocity UW = UO(x+ c1)

m. The variable mag-
netic field of strength B(x) = Bo

√
(x+ c1)

m−1 is applied normal to the surface of the parabola.
To analyze the heat and mass transport attributes thermal radiation and chemical reaction are in-
corporated. Hence, with the above specified constraints over a parabolic surface Williamson fluid
flow can be modeled as [1, 2].

(u)x + (v)y = 0, (1)

uux + v uy =
µ

ρ
uyy +

2µ
√
Γ

ρ
uy uyy −

σB2

ρ
u+ gβX1

1 +m

2
(T − Tm)

+ gβX2

1 +m

2
(C − C∞),

(2)

uTx + vTy + λ1λ1u
2Txx + λ1v

2Tyy + λ12uvTxy + λ1uuxTy + λ1uvxTy + λ1vuyTx + λ1vvyTy

=
k

ρcp
Tyy + τ ∗

[
DBTyCy +

DT

T∞
(Ty)

2

]
+
QX

ρcp
(T − Tm),

(3)

uCx + vCyλ2u
2Cxx + v2Cyy + 2uvCxy + uuxCx + uvxCy + vuyCx + vvyCy

= DBCyy +
DT

T∞
−K2

s

(
T

T∞

)s

e
−
Ea

k1T (C − C∞),
(4)

with the boundary conditions are

u− uw = 0, k
∂T

∂y
= ρv (L∗ + C∗

s (Tm − T0)) , T − Tm = 0, C − Cw = 0,

at y = B1

√
(x+ c1)

1−m

(5)

u→ 0, T → T∞, C → C∞, as y → ∞. (6)
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Here,
(x, y) : velocity components,

Γ : Williamson parameter,
g : gravitational constant,
cp : specific heat,
DB : diffusion constant,
σ : electrical conductivity.

Non-dimensionalization of (2)−(6) can be done by the use of stream function u = ψy , v = −ψx,
along with as [1, 2].

ξ = y

√
1 +m

2

u0
ϑ

(x+ c1)
m−1

, ψ(ξ) = F (ξ)

√
2ϑu0
1 +m

(x+ c1)
1+m

, G(ξ) =
T − Tm
T∞ − Tm

,

H(ξ) =
C − C∞

Cw − C∞
, βX1

= β1 (x+ c1)
2m−1

, βX2
= β2 (x+ c1)

2m−1
, QX = Qo (x+ c1)

m−1
,

K2
s = k2s (x+ b)

n−1
2 , λ1 = βT (x+ c1)

1−m
, λ2 = βC (x+ c1)

1−m
, Nb =

τDB (Cw − C∞)

ϑ

Nt =
τDT (Tm − T∞)

ϑT∞
, We = 2

√
Γu0

√
1 +m

2

u0
ϑ

(x+ c1)
3m−1

, Pr =
µcp
k
, Q =

Qo

ρcpUo
,

Mh =
cp(T∞ − Tm)

L∗ + C∗
s (Tm − T0)

, Gt =
gβ1(Tm − T∞)

U2
0

, Gs =
gβ2(Cw − C∞)

U2
0

, M =
2

1 +m

σ

µ0

B2
0

ρ

Sc =
ϑ

DB
, σ =

k2s
U0
, δ =

Tm − T∞
T∞

, E =
Ea

k1T∞
, α = B

√
(1 +m)u0

2ϑ
, βT = β1Uo,

βC = β2Uo.

The transformed governing equations are followed as,

F ′′′(ξ) +WeF ′′(ξ)F ′′′(ξ) +GtG(ξ) +GsH(ξ)−MF ′(ξ)− 2m

m+ 1
F ′2(ξ) + F (ξ)F ′′(ξ) = 0, (7)

G′′(ξ) + PrNbG′(ξ)H ′(ξ) + PrNtG′(ξ)2 + PrF (ξ)G′(ξ)2 + PrβT F (ξ)
m−3

2 F ′(ξ)G′(ξ)

− PrβT
m+ 1

2
F (ξ)mG′′(ξ) + PrQG(ξ) = 0,

(8)

H ′′(ξ) +
Nt

Nb
G′′(ξ) + ScF (ξ)H ′(ξ) + ScβC

m− 3

2
F (ξ)F ′(ξ)H ′(ξ)− ScβC

m+ 1

2
F ′′2(ξ)H ′′(ξ)

− Sc
2σ

n+ 1
(1 + ScδG(ξ))

s
e−

E
1+δG(ξ)H(ξ) = 0.

(9)
The transformed boundary conditions are,

F (α) =
1−m

m+ 1
α,

F ′(α) = 1, G(α) = 0, H(α) = 1, at α = 0.

(10)

F ′(α) = 0, G(α) = 1, H(α) = 0, at α→ ∞. (11)
For Non-dimensionalization of boundary conditions, define the transformations,

F (ξ) = F (η − α) = f(α),

G(ξ) = G(η − α) = g(α),
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which transmutes the equations and boundary conditions [α,∞) → [0,∞). The final equations
and boundary conditions can be written as,

f
′′′
(η) +Wef ′′ (η)f ′′′ (η) +Gt g(η) +Gsh(η)−Mf ′(η)− 2m

m+ 1
f ′

2
(η) + f(η) f ′′(η) = 0, (12)

g′′(η) + PrNb g′(η)h′(η) + PrNt g′(η)
2
+ Prf(η)g′(η) + PrβT

m− 3

2
f(η)f ′(η)g′(η)g′(η)

− PrβT
m+ 1

2
f ′′

2
(η)g′′(η) + PrQg(η) = 0,

(13)

h′′(η) +
Nt

Nb
g′′(η) + Scf(η)h′(η) + ScβC

m− 3

2
f(η)f ′(η)h′(η)

− ScβC
m+ 1

2
f ′′

2
(η)h′′(η)− Sc

2σ

n+ 1
(1 + δg(η))

s
e−

E
1+δg(η)h(η) = 0,

(14)

subject to dimensional boundary conditions,

f(0) =
1−m

m+ 1
α, f ′(0) = 1, g(0) = 0, h(0) = 1, (15)

f ′(∞) → 0, g(∞) → 1, h(∞) → 0. (16)

Physical quantities in the flow of Williamson fluid flowwhich are skin friction coefficient Cfx,
Nusselt number Nux and Sherwood Number Shx are defined as,

Cfx =
τw

ρu2w

√
1 +m

2

=
µuy + 2

√
Γµuyuy

ρu2w

√
1 +m

2

, at y = B

√
(x+ c1)

1−m
, (17)

Nux =
(x+ c1)qw
ko(Tw − T∞)

=
−(x+ c1)ko(1 +R)Ty

ko(Tw − T∞)
, at y = B

√
(x+ c1)

1−m
, (18)

Shx =
(x+ c1)qm

DB(Cw − C∞)
=

−(x+ c1)DBCy

DB(Cw − C∞)
, at y = B

√
(x+ c1)

1−m
. (19)

On simplification we get √
RexCfx = f ′′(0) [1 +Wef ′′(0)] ,

1√
Rex

Nux = −(1 +R)g′(0),

1√
Rex

Shx = −h′(0).

(20)

5 Numerical Interpretation

Due to the complexity and nonlinearity of the flow equations governing the proposed model,
it is tedious to perceive precise analytical solutions. Thus, the bvp4c solver in MATLAB facilitates
the computation of numerical solutions for these complex problems and offers a viable solution
strategy for addressing these challenges. The bvp4c differs significantly from earlier techniques
since bvp4c eliminates the prerequisite of an initial guess. To initialize bvp4c, the subsequent
variables are specified,
f(η) = f1, f ′(η) = f2, f ′′(η) = f3, g(η) = g1, g′(η) = g2, h(η) = h1, h′(η) = g2. (21)
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With the help of above variables (12)−(16) can be transfigured as,

f ′3 =

2m

m+ 1
f1

2 − f1 f3 + Mf2 − Gt g1 −Gsh1

1 +Wef3
, (22)

g′2 =

−Pr

(
Nb g2 h2 +Nt g2

2 + f1 g2 + βT
m− 3

2
f1f2g2 +Qg1

)
1− βT

m+ 1

2
f1

2(η)
, (23)

h′2 =

− Nt

Nb
g′2 − Sc

f1 h2 + βC
m− 3

2
f1f2 h2 −

2σ

n+ 1
(1 + δg1)

s
e
−

E

1 + δg1 h1


1− βC

m+ 1

2
f1

2(η)
, (24)

subject to,

Meg2a + Pr

(
f1a −

1−m

m+ 1
α

)
= 0, f2a = 1, g1a = 0, h1a = 1, (25)

f2b = 0, g1b = 1, h1b = 0. (26)

6 Results and Discussion

This section visually illustrates the consequences of newly identified parameters on associated
flow patterns via graphs, supplemented by tabular data highlighting their impact on key quanti-
ties.

Figures 2(a) and 2(b) delineate the velocity characteristics as a function ofmagnetic factor (M)
and Weissenberg factor (We). An analogous trend in velocity is discerned for modifications in
magnetic factor andWeissenberg factor. The escalation of the magnetic factor decelerates velocity.
Magnetic field becomes more formidable with rising magnetic factor. The formidable magnetic
field intensifies Lorentz forces and suppresses the fluid flow. TheWeissenberg factor characterizes
the elastic features of fluids. Higher Weissenberg factor evolves elastic forces and fluid exhibits
greater elasticity. Consequently, fluid becomes more resistant to flow and a drop evolves in veloc-
ity. Themagnetic andWeissenberg factors exert a more pronounced influence on velocity of plane
surface than on parabolic surface.
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(a) (b)

(c) (d)

(e)

Figure 2: Velocity profiles (a) Hartmann number (b) Weissenberg factor (c) Grashof number (d) Rayleigh number (e) Melting heat.

Figures 2(c)−2(e) showcase velocity patterns influenced by Grashof number (Gt), Rayleigh
number (Gs) and melting heat (Me). An escalation in velocity curves is discerned. Typically,
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buoyancy force emerges due to thermal discrepancies between adjacent and distant surface ar-
eas, enabling us to understand the resulting consequences. Higher Grashof number designates
intensified thermal disparities, Facilitating smoother and faster fluid movement and leads to aug-
mentation in velocity. It is evinced in Figure 2(c). A similar pattern is discerned for the Rayleigh
number in Figure 2(d). As the Rayleigh number increases, the natural convection becomes more
dominant, driving the fluid more vigorously over both parabolic and plane surfaces. The flow
geometry of the parabolic surface amplifies this effect, leading to higher velocity compared to the
plane surface under similar conditions. This behavior is crucial in understanding and optimizing
heat and mass transfer processes in such fluids. The vigorous melting process facilitates intensi-
fication in heat transmission from the heated liquid towards the surface, resulting in augmented
convective flow and elevated velocity profiles. The increase in velocity with higher melting heat
parameter (Me) is due to the reduction in fluid viscosity caused by heat absorption during melt-
ing. This enhances the flow near the surface, a trend seen for both parabolic and plane surfaces,
with parabolic surfaces maintaining slightly higher velocities due to the effects. It is evinced in
Figure 2(e). Compared to plane flow, parabolic flow velocity is more strongly influenced by the
aforementioned factors. The melting heat parameter enhances thermal energy and reduces vis-
cous and frictional forces, enabling the fluid to flow more easily and with greater velocity.

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure 3: Temperature profiles of (a) Hartmann number (b) Melting heat (c) Weissenberg factor (d) Brownian motion (e) Thermophoretic
term (f) Prandtl number (g) Heat source.

Temperature exhibits diminishing nature for enhanced values of magnetic parameter (M),
melting factor (Me) , Weissenberg factor (We), and for Brownian motion factor (Nb) as shown
in Figures 3(a)−3(d). The MHD factor’s intensification triggers a temperature drop, as evinced
in Figure 3(a). Intensifying the MHD factor typically yields robust magnetic forces. This robust
magnetic force and existence of melting heat constraint can inhibit the liquid’s heat transmission
abilities. Thus, heat flow is obstructed, culminating in a temperature reduction. From Figure 3(b),
elevated melting factor estimations lead to downward trend in temperature. Physically, a rise in
the melting factor signifies an intensification of heat production due to melting. In reality, the
melting process intensifies, enabling greater transfer of heat from the heated liquid to the cold
surface and consequently lowering the fluid temperature. AsMe increases, the absorption of heat
into the melting process reduces the energy available for heating the fluid, leading to lower tem-
peratures. This trend is consistent for both parabolic and plane surfaces, with parabolic surfaces
maintaining slightly higher temperatures due to their geometric influence. Increasing the melting
heat parameter intensifies heat absorption at the melting interface, leaving less energy to raise the
fluid’s temperature. Consequently, this leads to a decrease in the fluid’s temperature as observed
in your study. The drop in temperature as the Weissenberg parameter increases can be attributed
to lower viscous dissipation and decreased thermal diffusion. It suppressed convective heat trans-
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fer due to the fluid’s improved elastic behaviour. As the Brownian motion parameter increases,
the amplified random motion of nanoparticles absorbs more thermal energy, reduces the thick-
ness of the thermal boundary layer, and favours mass diffusion over heat diffusion. This energy
redistribution causes a decrease in fluid temperature. These effects are observed on parabolic and
planar surfaces, as shown in Figures 3(c) and 3(d). Moreover, parabolic flow exhibits a rapid
temperature escalation compared to plane flow.

Temperature exhibits escalating trend for enhancedvalues of thermophoretic term (Nt), Prandtl
number (Pr), heat source factor (Q) and thermal relaxation factor (βT ) as evinced in Figures
3(e)−3(h). Figure 3(e) demonstrates the response of temperature to the elevated thermophoretic
factor. Analysis of the figure shows that temperature curves ascend with higher thermophoretic
estimations. The proximity of particles to the heated surface induces a thermophoretic force, fa-
cilitating particle migration and leading to enhanced thermal conditions. Figure 3(f) sheds light
on the complex interaction between and temperature curves. A sharp increase in temperature
curves is evinced for Prandtl number’s upward shift. The Prandtl number’s growth leads to re-
duced viscous friction. As a result, the predominant portion of energy is utilized for temperature
enhancement, bypassing dissipation through viscous friction. With continued Prandtl number
escalation, the fluid’s heat transmission efficiency amplifies, leading to intensified temperature
gradients. The heat source furnishes auxiliary thermal energy, which is then absorbed by the
fluid. Heat absorption induces the fluid’s temperature to escalate. This phenomenon is visibly
demonstrated in Figure 3(g). A similar pattern is discerned for thermal relaxation factor which is
delineated in Figure 3(h). The increase in temperature as the thermal relaxation factor increases
is due to the delayed heat conduction, enhanced energy storage, and the thickening of the thermal
boundary layer. This effect is observed consistently over both parabolic and plane surfaces, as the
fluid retains more heat near the surfaces before dissipating it. The interaction of thermal relax-
ation with viscoelasticity and MHD effects further reinforces this behavior. Moreover, parabolic
flow exhibits a rapid temperature escalation compared to plane flow.

(a) (b)
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(c) (d)

(e) (f)

(g)

Figure 4: Concentration profiles of (a) Brownian motion (b) Mass relaxation time (c) Schmidt number (d) Reaction factor (e) Thermo-
pherotic term (f) Energy activation number (g) Hartmann number.
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Figures 4(a)−4(d) show cases concentration patterns influenced by Brownian motion (Nb),
mass relaxation factor (βC), Schmidt number (Sc) and reaction factor (σ). A deceleration in con-
centration curves is spotted for above factors. Brownian motion significantly affects the concen-
tration of the fluids. Brownian motion induces random particle movements, leading to dispersion
and distribution of particles, thereby diminishing concentration gradients that was presented in
Figure 4(a). Growing estimations of mass relaxation term drops concentration in Figure 4(b).
Intensification in mass relaxation term necessitates longer diffusion times for fluid particles to dif-
fuse. When βC = 0, diffusion occurs with remarkable speed. From Figure 4(c), it is disclosed that
concentration exhibits downward trends for Schmidt number. The reduction in concentration as
the Schmidt number (Sc) grows can be attributed to lower mass diffusivity, thinner concentra-
tion boundary layers, and momentum’s supremacy over mass transfer. Figure 4(d) evinces the
impression of influence of reaction parameter (σ) on concentration curves. Concentration curves
exhibit substantial decline as the reaction parameter amplifies. Elevating the reaction parameter
amplifies the Arrhenius term, ultimately harming the chemical reaction. Thus, the concentration
curves exhibit a downward trend. Parabolic flow demonstrates a pronounced concentration drop
than in plane flow.

Figures 4(e)−4(g) shows the concentration patterns as a function of thermophoretic term (Nt),
energy activation number (E) and magnetic factor (M). From Figure 4(e), amplification of the
thermophoretic term triggers a thermophoretic force, directing particles towards colder zones and
intensifying diffusion towards these areas, resulting in elevated concentration. From Figure 4(f),
amplification of the activation term strengthens concentration gradients. The Arrhenius equation
mathematically models activation energy’s introduction, illustrating reduced thermal energy and
acceleration result in decreased reaction rates, thereby elevating particle concentrations. As E in-
creases, the concentration decreases faster for both surfaces due to higher energy barriers. The
geometry influences the rate of decrease, with parabolic surfaces showing slower concentration
depletion than plane surfaces. Impression ofmagnetic factor is evinced in Figure 4(g). Amagnetic
field interacts with a conducting fluid, generating a Lorentz force that resists fluid motion. This
resistance slows down the flow or diffusion of the fluid, preventing the rapid depletion of con-
centration. HigherM reduces the rate of transport (e.g., diffusion or convection), allowing more
molecules or particles to accumulate in the system, resulting in higher concentrations. Parabolic
flow demonstrates a pronounced concentration drop than in plane flow.

7 Validation

Nomenclature

(u, v) : Velocity vector
(x, y) : Variables
Tm, T∞ : Sheet temperature, ambient temperature
B0 : Strength of magnetic field
βo : Volume fraction
µ : Thermal viscosities
ν =

µ

ρ
: Kinematic viscosities

Me : Melting parameter
Q : Heat source
cp : Specific heat
g : Gravity
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η : Similarity variable
Gt : Mixed convection parameter
Gs : Rayleigh number
α : Thickness parameter
Pr : Prandtl number
Sc : Schmidt number
CW : Concentration of the surface
C∞ : Ambient fluid concentration
E : Energy parameter
σ : Reaction parameter

A detailed comparison with previous research is conducted to evaluate the validity of the ob-
tained results and the numerical methods used [1, 2]. The drag force is assessed by neutralising
(set to zero) other influencing factors and by varying magnetic factor (M), which is evinced in Ta-
ble 1. The congruent results provide robust confirmation of the coding approach. So, an in-depth
analysis of recent scholarly work confirms that the advocated numerical technique and accompa-
nying results are exceedingly reliable and dependable. The table presents a comparative study
of the values computed for a specific parameterM using three different methods: the reports by
Akbar et al. [4], Malik et al. [39], and the bvp4cmethod. Across the range ofM values, the results
from all threemethods are closely aligned, showingminimal variation. For smallerM values, such
as 0, 0.5, and 1, the differences are negligible, highlighting the high accuracy of all approaches.
However, asM increases, the slight differences become more apparent due to the precision limits
of the methods. For example, atM = 1000, the values are very close but not identical: This com-
parison demonstrates that while all methods provide consistent and reliable results, bvp4c offers
higher precision due to its advanced computational capabilities.

Table 1: Comparative study of−f ′′(0)with the existing reports form = 1 in the absence of other parameters.

M Akbar et al. [4] Malik et al. [39] bvp4c
0 1.0000 1.0000 10000747
0.5 1.11803 1.11802 1.11803448
1 1.41421 1.41419 1.41421356
5 2.44949 2.44945 2.44948974
10 3.31663 3.31657 3.31662479
100 10.04988 10.04981 10.04987518
500 22.38303 22.38294 22.38302912
1000 31.63859 31.63851 31.63858418

Table 2 illustrates the influence of parameter variations on surface drag for parabolic and plane
configurations. AsWe increase, the skin friction increases for parabolic and plane surfaces, with
parabolic surfaces consistently showing higher values. This indicates that viscoelastic effects en-
hance resistance to flow, with geometry playing a significant role. Skin friction increases with
M , showing the magnetic field’s suppressive effect (Lorentz force) on the velocity. Parabolic sur-
faces exhibit greater skin friction than plane surfaces, likely due to curvature amplifying the mag-
netic damping effect. Increasing Gt (positive values correspond to aiding flow) reduces skin fric-
tion, as buoyancy assists fluid movement, lowering resistance. Both surfaces show this trend, but
the parabolic surface retains higher skin friction. Increasing Gs decreases skin friction on both
surfaces, reflecting the dominance of thermal buoyancy forces in reducing viscous resistance.
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Parabolic surfaces exhibit a more significant decline compared to plane surfaces. As the Melt-
ing parameter increases, skin friction decreases on both surfaces, indicating that melting at the
interface absorbs energy and reduces the boundary layer’s resistance. Again, parabolic surfaces
maintain higher skin friction compared to plane surfaces.

Table 2: A comparative study of skin friction.

We M Gt Gs Me Parabolic surface Plane surface
0.1 1.27314982 1.09073852
0.2 1.34923427 1.13775836
0.3 1.45740724 1.19844473

0.0 1.15534306 0.98234129
0.5 1.42836365 1.23637813
1.0 1.65272684 1.45003968

0.2 1.25635615 1.08161140
0.5 1.17178975 1.03417596
0.8 1.21150823 1.05673623

0.2 1.26483493 1.08279900
0.5 1.24026787 1.05948487
0.8 1.21622189 1.03682667

0.2 1.22691370 1.06641822
0.4 1.15426219 1.02650051
0.6 1.09903896 0.99479613

Table 3 illustrates the influence of parameter variations on Nusselt number for parabolic and
plane configurations. The Nusselt number decreases slightly for both surfaces as We increase,
indicating reduced heat transfer efficiency due to the fluid’s visco elasticity. The decrease is more
pronounced for the plane surface. AsM increases, theNusselt number decreases for both surfaces,
showing that the magnetic field dampens the flow and thermal gradients, leading to lower heat
transfer. The reduction ismore significant for the plane surface. HigherGt andGsvalues generally
enhance the Nusselt number on both surfaces, emphasising the role of buoyancy in promoting
convective heat transfer. Parabolic surfaces experience a more substantial increase due to their
geometry. As Me increases, the Nusselt number rises for both surfaces. This indicates that the
enhanced melting process improves heat transfer by thinning the thermal boundary layer. Due to
their curved geometry, parabolic surfaces show a consistently higher Nusselt number than plane
surfaces.

Table 4 illustrates the influence of parameter variations on Sherwood number for parabolic and
plane configurations. As We increases, the Sherwood number decreases for both surfaces, indi-
cating that viscoelastic effects reduce the mass transfer rate. Plane surfaces exhibit slightly higher
Sherwood numbers than parabolic surfaces. Increasing M decreases the Sherwood number, as
the Lorentz force slows fluid motion, reducing the mass transfer rate. This trend is observed for
both surfaces, with plane surfaces showing marginally higher values. As Gc increases, the Sher-
wood number rises, reflecting enhanced mass transfer due to buoyancy effects aiding diffusion.
Plane surfaces again show slightly higher values. AsE increases, the Sherwood number increases
for both surfaces, suggesting that higher energy levels enhance species diffusion. Plane surfaces
maintain higher mass transfer rates compared to parabolic ones. Increasing σ (representing reac-
tion strength) decreases the Sherwood number, as stronger chemical reactions consume diffusing
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species, reducing themass transfer rate. The plane surface exhibits higher values across the range.

From Tables 2, 3, and 4, it is evinced that the parabolic surface demonstrates superior skin fric-
tion and heat transmission accompanied by reduced mass transport compared to plane surfaces.

Table 3: A comparative study of Nusselt number.

We M Gt Me Q βt Parabolic surface Plane surface
0.1 1.01823044 0.64130867
0.2 1.01240333 0.63644202
0.3 1.00547127 0.63092658

0.0 1.03535468 0.66409567
0.5 0.99690030 0.61188697
1.0 0.96845241 0.57146113

0.2 1.02350308 0.64696301
0.5 1.03658393 0.66072385
0.8 1.04721698 0.67174158

0.2 0.94429912 0.60335688
0.4 0.83012205 0.54176285
0.6 0.74479818 0.49350644

0.1 1.10180702 0.70633667
0.2 1.19384871 0.77961589
0.3 1.29550198 0.86254529

0.1 0.99451191 0.63201865
0.2 0.99708662 0.63303449
0.3 0.99967619 0.63405439

Table 4: A comparative study of Shearwood number.

We M Gc σ E Parabolic surface Plane Surface
0.1 0.19514845 0.20038384
0.2 0.18936130 0.19683424
0.3 0.18290788 0.19300631

0.0 0.22207607 0.22777591
0.5 0.16396831 0.16742554
1.0 0.12660306 0.12733443

0.2 0.19722529 0.20302409
0.5 0.20320935 0.21036039
0.8 0.20886234 0.21698213

0.1 0.07742346 0.08625472
0.5 0.14980188 0.15760089
1.0 0.14980188 0.15760089

2 0.20335758 0.20784054
3 0.18681034 0.19276829
4 0.16537019 0.17298420
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8 Conclusion

A novel comparative scrutiny is carried out on parabolic and plane surfaces in the context of
Williamson fluid. This study delineates the complex interactions among several critical factors
like activation energy and melting heat accounting for supplementary factors such as mixed con-
vection, heat source. This research endeavors to impart insight into the multifaceted relationships
between various factors affecting fluid flow and elucidate the underlying mechanisms that influ-
ence the flow dynamics. The prime conclusions are:

• The magnetic and Weissenberg factors exert a more pronounced influence on velocity of
plane surface than on parabolic surface.

• Compared to plane flow, parabolic flow velocity is more strongly influenced by the melting
factor.

• Parabolic flow exhibits a rapid temperature escalation compared to plane flow.
• Parabolic flow demonstrates a pronounced concentration drop than in plane flow.
• Elevated melting factor estimations lead to downward trend in temperature and elevation

in velocity.
• Heat source and thermal relaxation factors induces escalation in the fluid’s temperature.
• Concentration curves exhibit substantial decline for reaction parameter and mass relaxation

factors.
• Amplification of the activation term strengthens concentration gradients.
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